Generalized statistical label fusion using multiple consensus levels

نویسندگان

  • Zhoubing Xu
  • Andrew J. Asman
  • Bennett A. Landman
چکیده

Segmentation plays a critical role in exposing connections between biological structure and function. The process of label fusion collects and combines multiple observations into a single estimate. Statistically driven techniques provide mechanisms to optimally combine segmentations; yet, optimality hinges upon accurate modeling of rater behavior. Traditional approaches, e.g., Majority Vote and Simultaneous Truth and Performance Level Estimation (STAPLE), have been shown to yield excellent performance in some cases, but do not account for spatial dependences of rater performance (i.e., regional task difficulty). Recently, the COnsensus Level, Labeler Accuracy and Truth Estimation (COLLATE) label fusion technique augmented the seminal STAPLE approach to simultaneously estimate regions of relative consensus versus confusion along with rater performance. Herein, we extend the COLLATE framework to account for multiple consensus levels. Toward this end, we posit a generalized model of rater behavior of which Majority Vote, STAPLE, STAPLE Ignoring Consensus Voxels, and COLLATE are special cases. The new algorithm is evaluated with simulations and shown to yield improved performance in cases with complex region difficulties. Multi-COLLATE achieve these results by capturing different consensus levels. The potential impacts and applications of generative model to label fusion problems are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Likelihoods for Labeling (L3): A General Multi-Classifier Segmentation Algorithm

PURPOSE To develop an MRI segmentation method for brain tissues, regions, and substructures that yields improved classification accuracy. Current brain segmentation strategies include two complementary strategies. Multi-spectral classification techniques generate excellent segmentations for tissues with clear intensity contrast, but fail to identify structures defined largely by location, such ...

متن کامل

Predicting Generalized Anxiety Disorder Based on Emotion Regulation Deficits, Thought-Action Fusion, and Behavioral Inhibition

Background & Aims: Generalized anxiety disorder (GAD) can be affected by different emotional, cognitive, and natural factors. The purpose of this study was to predict GAD based on emotion regulation deficits, thought-action fusion, and behavioral inhibition. Methods: This was a correlational study. The study sample was comprised of 135 patients with GAD selected from amo...

متن کامل

Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a c...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 8314  شماره 

صفحات  -

تاریخ انتشار 2012